>
%` bjbj"x"x *@@XtttttttPPPPt8$h)ttt.___.tt___tt_wGP _\D0t_v_t_$]_i
U
t$Z^Y^ttttttRepresentative Exam Questions
On The Topic of Equilibrium
(Includes Acid / Base Equilibria)
Detailed Answer Key Answers and Explanations
1. If a chemical equilibrium very much favors the products over the reactants, what would we expect its equilibrium constant to be like?
* a) We would expect the equilibrium constant to be a very large number.
b) We would expect the equilibrium constant to be a very small number.
c) We would not be able to make any prediction about the size of the
equilibrium constant, because its numerical value conveys no
information on what is favored in the equilibrium.
The larger the equilibrium constant, the more the right (product) side is favored, and the smaller the
equilibrium constant, the more the left (reactant) side is favored.
2. If a chemical reaction reaches equilibrium very quickly, what would we expect its equilibrium constant to be like?
a) We would expect the equilibrium constant to be a very large number.
b) We would expect the equilibrium constant to be a very small number.
* c) We would not be able to make any prediction about the size of the
equilibrium constant, because its numerical value conveys no
information on the time required to reach equilibrium.
The equilibrium constant tells us about the position of equilibrium, but not about the time required to get there.
3. What is always true about a chemical reaction when it is at equilibrium?
a) The concentrations of all the reactants are zero.
b) All substances shown in the reaction have equal concentrations.
* c) The forward reaction rate is equal to the reverse reaction rate.
d) Both the forward and reverse reaction have come to a stop.
Equilibrium is the name given to the condition of having two opposing processes occurring at the same rate. Although all concentrations remain constant at equilibrium, they are not necessarily equal to each other.
4. Chemical equilibrium is said to be
a) static *b) dynamic
The forward and reverse reactions continue to occur when the system is at equilibrium.
5. A negative equilibrium constant is obtained
a) when a reaction is elementary
b) when a reaction is non-elementary
c) when the reaction is exothermic in the forward direction
d) when you reverse the direction of a reaction that initially
had a positive equilibrium constant
* e) under no circumstances
Equilibrium constants are calculated by multiplying and dividing concentrations (for KC) or pressures (for KP) raised to various powers. Concentrations and pressures are always positive numbers, and there is no way to obtain a negative answer when positive numbers are multiplied, divided, or raised to powers.
6. For any chemical reaction that reaches an equilibrium, it is possible to write a balanced equilibrium equation and a corresponding equilibrium constant expression. On what factors will the numerical value of the equilibrium constant depend?
a) None. A given reaction has a characteristic numerical value for its
equilibrium constant that applies under all conditions.
b) Temperature
c) The choice of coefficients used to balance the equation describing
the reaction.
d) Whether the reaction is elementary or non-elementary
* e) Both b and c
Except for reactions that are neither endothermic nor exothermic (a very rare situation) changing the temperature shifts the position of equilibrium. Heating the system drives the reaction in the endothermic direction, and cooling the system drives the reaction in the exothermic direction. If a chemical equation is multiplied by a constant, the equilibrium constant is raised to that power. For example, multiplying a reaction by 2 results in the equilibrium constant being squared. Also, reversing the direction of a chemical reaction takes the reciprocal of the equilibrium constant. For example, a reaction that has an equilibrium constant of 2 when written in one direction has an equilibrium constant of 0.5 when written in the reverse direction.
7. Given the equilibrium reaction
2A(g) + 2BC(g) <----------> AB2(g) + AC2(g) KC = 4
what is the numerical value of the equilibiurm constant (KC) for the reaction
AB2(g) + AC2(g) <----------> 2A(g) + 2BC(g) KC = ?
a) -4 b) -2 *c) 0.25 d) 0.50 e) 4
The original reaction has been reversed. Therefore, we must take the reciprocal of the original equilibrium constant. 1 / 4 = 0.25
8. Given the equilibrium reaction
A(g) + 2B(g) <----------> AB2(g) KC = 9
what is the numerical value of the equilibrium constant (KC) for the reaction
2A(g) + 4B(g) <----------> 2AB2(g) KC = ?
a) 3 b) 4.5 c) 9 d) 18 *e) 81
The original reaction was multiplied by 2, so the equilibrium constant must be raised to the power 2, that is, squared. 92 = 81.
9. Given the equilibrium reactions
AB(g) <----------> A(g) + B(g) KC = 0.5
2A(g) + B2(g) <----------> A2B(g) + B(g) KC = 6
what is the equilibrium constant (KC) for the following reaction?
3A(g) + B2(g) <----------> A2B(g) + AB(g) KC = ?
a) 3 b) 5.5 c) 6.5 *d) 12 e) 36
You can get the target reaction by reversing the first reaction and then adding the second reaction. Reversing the first reaction changes its equilibrium constant from 0.5 to 2. Recall that reversing a reaction takes the reciprocal of its equilibrium constant. 1 / 0.5 = 2. When chemical reactions are added, their equilibrium constants are multiplied.
2 x 6 = 12.
10. The reaction
2NH3(g) <----------> N2(g) + 3H2(g)
has KC = 6.46 x 10-3 at 300 oC. What is the value of KP for the reaction at this same temperature? Note that R = 0.0820584 (L atm) / (K mol). Temperatures must be in Kelvin units.
a) 2.62 x 10-4 b) 0.159 c) 0.304
d) 3.91 *e) 14.3
KP = KC . (RT)Dn Dn = (1+3) - 2 = 4 2 = 2
KP = 6.46 x 10-3 . (0.0820584 x 573.15)2 = 14.3
11. The reaction
N2O4(g) <----------> 2NO2(g)
has KP = 0.145 at 25 oC. What is KC for the reaction at this same temperature? Note that R = 0.0820584 (L atm) / (K mol). Temperatures must be in Kelvin units.
*a) 5.93 x 10-3 b) 7.07 x 10-2 c) 0.297
d) 3.55 e) 24.6
KC = KP . (RT)-Dn Dn = 2 1 = 1
-Dn = -1
KC = 0.145 . (0.0820584 x 298.15)-1 = 5.93 x 10-3
12. Sulfur trioxide gas, SO3, was put in a heated reaction vessel and maintained at a temperature of 700 oC. Some of the SO3 decomposed into SO2 and O2 gases, and an equilibrium was established between the SO3, SO2, and O2. The chemical equation describing this equilibrium is
2SO3(g) <----------> 2SO2(g) + O2(g)
The equilibrium concentrations of these three gases were determined and found to be
[SO3]eq = 1.14 x 10-2 M
[SO2]eq = 8.64 x 10-3 M
[O2]eq = 4.32 x 10-3 M
What is the numerical value of the equilibrium constant for this reaction at
700 oC?
a) 1.56 x 10-4 *b) 2.48 x 10-3 c) 5.81 x 10-2
d) 4.72 x 102 e) 6.38 x 103
[SO2]2eq [O2]eq
KC = --------------
[SO3]2eq
(8.64 x 10-3)2 (4.32 x 10-3)
KC = ---------------------------- = 2.48 x 10-3
(1.14 x 10-2)2
13. At 395 oC, an equilibrium mixture of CO, Cl2, and COCl2 was found to have the following concentrations:
[CO]eq = 6.5 x 10-3 M
[Cl2]eq = 1.4 x 10-3 M
[COCl2]eq = unspecified
The equilibrium reaction for this chemical system is as follows:
CO(g) + Cl2(g) <----------> COCl2(g) KC = 1.2 x 103 at 395 oC
What is the concentration of COCl2 in this mixture at 395 oC?
a) 7.4 x 10-9 M b) 8.8 x 10-6 M c) 3.5 x 10-3 M
d) 6.9 x 10-3 M *e) 1.1 x 10-2 M
[COCl2]eq
KC = -------------
[CO]eq.[Cl2]eq
Solving this for [COCl2]eq gives
[COCl2]eq = KC . [CO]eq . [Cl2]eq
= 1.2 x 103 (6.5 x 10-3) (1.4 x 10-3)
= 1.1 x 10-2
14. Into a 10.00 L reaction vessel, a chemist placed 0.381 moles of HI, 0.492 moles of H2, and 0.773 moles of I2 at 425 oC. The chemical equation for the equilibrium of HI, H2, and I2 is as follows:
2HI(g) <----------> H2(g) + I2(g) KC = 1.84 at 425 oC
What can be said about this chemical system?
a) This is an equilibrium mixture. No net reaction will occur.
*b) This is not an equilibrium mixture. Some of the H2 and I2 will combine to
form HI until equilibrium is reached.
c) This is not an equilibrium mixture. Some of the HI will decompose into
H2 and I2 until equilibrium is reached.
[HI] = 0.381 mol / 10.00 L = 0.0381 mol L-1
[H2] = 0.492 mol / 10.00 L = 0.0492 mol L-1
[I2] = 0.773 mol / 10.00 L = 0.0773 mol L-1
[H2] [I2] (0.0492) (0.0773)
QC = --------- = ----------------- = 2.62
[HI]2 (0.0381)2
QC > KC so the reaction will proceed to the left. This means some of the H2 and I2 will react to form HI.
15. A 5.00 L reaction vessel at 3900 oC initially contained 0.200 moles each of N2 and O2 gases. These reacted to form NO as described by the following equation:
N2(g) + O2(g) <----------> 2NO(g) KC = 0.0123 at 3900 oC
How many moles of NO will be present in the container when the system has reached equilibrium?
a) 8.91 x 10-3 mol *b) 2.10 x 10-2 mol c) 4.23 x 10-2 mol
d) 7.66 x 10-2 mol e) 1.85 x 10-1 mol
[N2]initial = 0.200 mol / 5.00 L = 0.0400 mol L-1
[O2]initial = 0.200 mol / 5.00 L = 0.0400 mol L-1
[NO]initial = 0 mol L-1
AN ICE TABLE
[N2][O2][NO]Initial0.04000.04000Change-X-X+2XEquilibrium0.0400 - X0.0400 - X2X
[NO]2eq
------------ = KC
[N2]eq [O2]eq
(2X)2
------------------------- = 0.0123
(0.0400 X) (0.0400 X)
(2X)2
------------- = 0.0123
(0.0400 X)2
2X
------------- = 0.1109 Note: A square root has
(0.0400 X) both a positive and
a negative root
2X = 0.1109 (0.0400 X)
Case 1: positive root Case 2: negative root
2X = 0.1109 (0.0400 X) 2X = -0.1109 (0.0400 X)
2X = 0.004436 0.1109X 2X = -0.004436 + 0.1109X
2X + 0.1109X = 0.004436 2X 0.1109X = -0.004436
(2 + 0.1109)X = 0.004436 (2 0.1109)X = -0.004436
2.1109X = 0.004436 1.8891X = -0.004436
X = 0.00210 X = -0.00235
Since none of the equilibrium concentrations in the ICE table can be negative, the acceptable values for X are in the following range:
0 < X < 0.0400
Therefore, the X value obtained in Case 2 (-0.00235) must be rejected. The value of X obtained in Case 1 (0.00210)
falls within the acceptable range. The equilibrium concentrations are now known:
[N2]eq = 0.0400 X = 0.0400 0.00210 = 0.0379
[O2]eq = 0.0400 X = 0.0400 0.00210 = 0.0379
[NO]eq = 2X = 2 . (0.00210) = 0.00420
To confirm that these are the equilibrium concentrations, substitute them back into the equilibrium constant expression and confirm that the original KC is obtained.
(0.00420)2
KC = ----------------- = 0.0123
(0.0379) (0.0379)
The equilibrium concentration of NO is 0.00420 mol L-1. The total number of moles of NO in the 5.00 L container is
0.00420 mol L-1 x 5.00 L = 0.0210 mol
= 2.10 x 10-2 mol
16. What is the pH of a 3.88 M NH3 solution? NH3 is a weak base that establishes the following equilibrium when dissolved in water:
NH3(aq) + H2O(l) <----------> NH4+(aq) + OH-(aq) Kb = 1.8 x 10-5
The math is no worse than a quadratic, even if you don't approximate, but it should be ok to approximate in this problem.
a) 2.1 b) 8.6 c) 9.2 *d) 11.9 e) 12.8
[NH3]initial = 3.88 mol L-1
[NH4+]initial = 0 mol L-1
[OH-]initial H" 0 mol L-1 Note: In an aqueous system,
a small amount of OH-
is always present from
the self-ionization of
H2O.
AN ICE TABLE
[NH3][NH4+][OH-]Initial3.880H" 0Change-X+X+XEquilibrium3.88 - XXX
[NH4+]eq [OH-]eq
--------------- = Kb
[NH3]eq
(X) (X)
----------- = 1.8 x 10-5
(3.88 X)
Since the initial concentration of NH3 is fairly large, and the extent of ionization is small (as indicated by the small value of Kb), the concentration of NH3 is probably not significantly reduced by the ionization. That is,
3.88 X H" 3.88
This makes it possible to ignore the subtraction of X in the denominator. This greatly simplifies the equation. It can now be written as follows:
(X) (X)
------- = 1.8 x 10-5
3.88
X2
----- = 1.8 x 10-5
3.88
X2 = 3.88 (1.8 x 10-5) = 7.0 x 10-5
X = 8.4 x 10-3 = [OH-]eq
[H3O+] [OH-] = KW = 1.0 x 10-14 Numerical value applies
at 25 oC
KW 1.0 x 10-14
[H3O+] = ----- = ----------- = 1.2 x 10-12
[OH-] 8.4 x 10-3
pH = -log [H3O+] = -log (1.2 x 10-12) = 11.9
17. What is the [H3O+] in a 2.50 M HClO solution? Hypochlorous acid, HClO, is a weak acid with the following equilibrium equation:
HClO(aq) + H2O(l) <----------> H3O+(aq) + ClO-(aq) Ka = 3.5 x 10-8
The math is no worse than a quadratic, even if you don't approximate, but it should be ok to approximate in this problem.
a) 3.4 x 10-11 b) 5.5 x 10-8 c) 5.1 x 10-6
*d) 3.0 x 10-4 e) 2.3 x 10-2
[HClO]initial = 2.50 mol L-1
[H3O+]initial H" 0 mol L-1 Note: There is always a small
amount of H3O+ present
in an aqueous system
due to the self-
ionization of water.
[ClO-]initial = 0 mol L-1
AN ICE TABLE
[HClO][H3O+]ClO-]Initial2.50H" 00Change- X+X+XEquilibrium2.50 - XXX
[H3O+]eq [ClO-]eq
---------------- = Ka
[HClO]eq
(X) (X)
---------- = 3.5 x 10-8
(2.50 X)
Since the initial concentration of HClO is fairly large and the extent of ionization is very small (as indicated by the numerical value of Ka), the concentration of HClO is probably not significantly reduced by the ionization. That is,
2.50 X H" 2.50
With this approximation, we can ignore the subtraction of X in the denominator, which greatly simplifies the equation.
(X) (X)
------- = 3.5 x 10-8
2.50
X2
---- = 3.5 x 10-8
2.50
X2 = 2.50 (3.5 x 10-8) = 8.8 x 10-8
X = 3.0 x 10-4 = [H3O+]
18. What is the [OH-] in a 0.0100 M HCl solution? Note that HCl is a strong acid. It ionizes completely when dissolved in water:
HCl(aq) ==========> H+(aq) + Cl-(aq)
Enough HCl was added to provide 0.0100 moles of HCl for each liter of solution, but once added to water, it exists entirely as ions -- no molecular HCl is found in the solution.
*a) 1.0 x 10-12 b) 1.0 x 10-10 c) 1.0 x 10-8
d) 1.0 x 10-4 e) 1.0 x 10-2
Note that the equation is written to show H+ rather than H3O+. You will find that H+ and H3O+ are often used interchangeably. If you prefer, you can add H2O to both sides of the equation and write it as
HCl(aq) + H2O(l) ==========> H3O+(aq) + Cl-(aq)
HCl is a strong acid. We regard the ionization of a strong acid to be 100% complete, rather than having the ions in equilibrium with the unionized acid. We can still set up an ICE table, but there is no unknown X in it. Rather, numerical values can be obtained for every cell in the table.
[HCl]initial = 0.0100 mol L-1
[H3O+]initial H" 0 mol L-1 Note: There is always a small
amount of H3O+ present
in an aqueous system
due to the self-
ionization of water.
[Cl-]initial = 0 mol L-1
AN ICE TABLE
[HCl][H3O+][Cl-]Initial0.0100H" 00Change-0.0100+0.0100+0.0100Equilibrium00.01000.0100
[H3O+]eq = 0.0100 mol L-1
[H3O+]eq [OH-]eq = KW = 1.0 X 10-14 Numerical value
applies at 25 oC
KW 1.0 x 10-14
[OH-]eq = ------- = ------------ = 1.0 x 10-12
[H3O+]eq 0.0100
19. What is the pOH of a 4.20 M hydrocyanic acid (HCN) solution? Note that hydrocyanic acid is a weak acid that establishes the following equilibrium in water:
HCN(aq) + H2O(l) <----------> H3O+(aq) + CN-(aq) Ka = 6.2 x 10-10
The math is no worse than a quadratic, even if you don't approximate, but it should be ok to approximate in this problem.
a) 1.6 b) 4.3 c) 8.1 *d) 9.7 e) 12.4
[HCN]initial = 4.20 mol L-1
[H3O+]initial H" 0 Note: There is always a small
amount of H3O+ present
in an aqueous system
due to the self-
ionization of water.
[CN-]initial = 0
AN ICE TABLE
[HCN][H3O+][CN-]Initial4.20H" 00Change-X+X+XEquilibrium4.20 - XXX
[H3O+]eq [CN-]eq
---------------- = Ka
[HCN]eq
(X) (X)
--------- = 6.2 x 10-10
4.20 X
Since the initial concentration of HCN is fairly large and the extent of ionization if very small (as indicated by the small value of Ka), the concentration of HCN is probably not significantly reduced by the ionization. That is,
4.20 X H" 4.20
With this approximation, the subtraction of X in the denominator can be ignored. This greatly simplifies the equation.
(X) (X)
-------- = 6.2 x 10-10
4.20
X2
----- = 6.2 x 10-10
4.20
X2 = 4.20 (6.2 x 10-10) = 2.6 x 10-9
X = 5.1 x 10-5 = [H3O+]eq
[H3O+]eq [OH-]eq = KW = 1.0 x 10-14 Numerical value
applies at 25 oC
KW 1.0 x 10-14
[OH-]eq = ------ = ------------ = 2.0 x 10-10
[H3O+]eq 5.1 x 10-5
pOH = -log [OH-]eq = -log (2.0 x 10-10) = 9.7
20. What is the [H3O+] in a 3.00 M sodium acetate (NaHC2H3O2) solution? Note that sodium acetate is a salt that undergoes hydrolysis after being dissolved in water. The salt is freely soluble, and dissolves without establishing an equilibrium:
NaHC2H3O2(aq) ==========> Na+(aq) + C2H3O2-(aq)
The Na+, being the conjugate acid of a strong base (NaOH) is too weak an acid to react with water. The C2H3O2-, being the conjugate base of a weak acid (HC2H3O2) has enough base strength to react with water:
C2H3O2-(aq) + H2O(l) <----------> HC2H3O2(aq) + OH-(aq)
The numerical value of the equilibrium constant for the above reaction is normally not published in tables, because it can be obtained from the equilibrium constants of two other reactions that ARE published:
HC2H3O2(aq) + H2O(l) <----------> H3O+(aq) + C2H3O2-(aq) Ka =1.8 x 10-5
2H2O(l) <----------> H3O+(aq) + OH-(aq) Kw = 1.0 x 10-14
By combining these two reactions i{~ d w
$:
,
4
s
t
IckI~bcopuv ");
XYӻӵӻӨӨ
h|seCJH*h|seCJH*OJQJ^J
h*CJh|se6CJOJQJ]^Jh|se5CJ\h|seCJOJQJ^Jh|se5\
h|seCJh*h* h*>*h|seh*?:\] d e <
t
u
$%
h8p0^`0
p]
h80^`0$a$gd*45s
CDIJz
h8p0^`0z{OxyVWjk
h8p0^`09:{|89lm
h8p
h8p0^`0HIRABXYlm12HIUVbcoqyz%'OZ[\bcde
T V r v x z ݼݼݯݣݼh|seCJOJQJ^Jh|seCJH*OJQJ^Jh|seCJH*OJQJ^J
h|seCJH*h|seCJH*OJQJ^Jh|seCJOJQJ^Jh|se5CJ\
h|seCJ
h|seCJH*@RSwx12rs+,Z[>?WX
h8p0^`0XL N (!*!v"x"""
##X#|#~###%%D%E%%%
h8p
h8p0^`0z ! !:!0]>^`0
h80]^`0
h800]0^`0-----....2.Y.[........./////////////////////!0#0)0*0+040Z0\0d0k0w0y0000000111111!1$1%1&1(151h|seCJH*OJQJ^Jh|se5CJH*\h|se5CJ\
h|seCJH*
h|seCJH*
h|seCJh|seCJH*OJQJ^Jh|seCJOJQJ^JF0000000000[kd$$Ifl\d
j,"064
la
h8>$If]> 000000k[[[[
h8>$If]>kd$$Ifl\d
j,"064
la000000k[[[[
h8>$If]>kdP$$Ifl\d
j,"064
la00011+1,171^1z1{1kXXXXXXXXX
h8>0]>^`0kd$$Ifl\d
j,"064
la
5161111111<22+5,5-5/5d5e5f5h55555a6b6666666I7K7}777777788#8$8@8A8B8S8T8[8\8g8i8m8999999ŽŽŴŭŴŤŽŤœh|se5CJ\h|seCJEHh|seCJEHH*
h|seCJH*h|seCJEHH*h|seCJEH
h|seCJh|seCJH*OJQJ^Jh|seCJOJQJ^JaJh|seCJOJQJ^Jh|seCJH*OJQJ^J:{111111122232Q2S2222222-3.3g3h33333D47$8$H$
h8>0]>^`0D4E4[4\44&5'5_5`55555p6q6666697:7f7g777
h8>0]>^`0788j8k888997989V9W9X:::(;J;L;r;t;
7$8$H$]7$8$H$
h807$8$H$]^`0
h807$8$H$^`09%94969=9>9?9@9G9S9U9[9\9]9d9:::::B;D;t;|;~;;;;;;;;;;;;;;
<<<<<<<<˼˼˭˟s˟sssh|seCJOJQJ^JaJh|seCJH*OJQJ^JaJh|seCJH*OJQJ^JaJh|seCJOJQJ^JaJh|seCJH*OJQJ^JaJh|seCJH*OJQJ^JaJh|seCJOJQJ^JaJh|seCJH*OJQJ^Jh|seCJOJQJ^Jh|seCJH*OJQJ^J-t;v;;;;;;;;;\kd$$Ifl\:,"064
la$7$8$H$If] ;;;;;;k\\\\$7$8$H$If]kd7$$Ifl\:,"064
la;;< <<
<k\\\\$7$8$H$If]kd$$Ifl\:,"064
la
<<< <7<B<C<M<h<kaIIIIII
h807$8$H$^`0
7$8$H$]kde$$Ifl\:,"064
la<<< <5<6<=<><?<B<e<g<<<<<==>?????????@@@@0@2@:@;@<@>@E@F@G@H@M@N@U@V@c@f@@@@@@@@@@@@@@@AAAAAA.A1A>>?@?T????????@ @@@A@@@@
h8007$8$H$]0^`0
h807$8$H$^`0@@@AAAAABBBBBBBBCC
h807$8$H$]^`0
h807$8$H$^`0
h87$8$H$
h8007$8$H$]0^`0QARASATAAAAAAABB
BBBBBBBBBBBBBBBBBBBCCCCCCCCCC%CDDDDDDDDEEEEEٶٶh|seCJOJQJ^JaJh|seCJEHH*OJQJ^Jh|seCJEHH*OJQJ^Jh|seCJEHOJQJ^Jh|se5CJEHH*\h|se5CJ\h|seCJEHh|seCJEHh|seCJEHH*
h|seCJ
h|seCJH*6CXDDD4E~EEEEEEEEFF
h80$7$8$H$If]0
h807$8$H$^`0
h8007$8$H$]0^`0EEFFFFFF4F:FFFFFFFFFFFFFFF
GG\G`GHHlIxIzI|IIcJeJsJtJJJJJJJJJJJJJJJJJJŢŢŢŢŢŢŢœŢh|seCJH*OJQJ^JaJh|seCJH*OJQJ^JaJh|seCJOJQJ^Jh|seCJEHh|seCJOJQJ^JaJh|seCJEHH*OJQJ^Jh|seCJEHOJQJ^Jh|seCJEHH*OJQJ^J7FF*F4FT?T@TBTLTMTԶԶԶh|seCJOJQJ^Jh|seCJH*OJQJ^JaJh|seCJEHH*OJQJ^Jh|seCJEHH*OJQJ^Jh|seCJEHOJQJ^Jh|seCJOJQJ^JaJh|seCJH*OJQJ^JaJ=QQQRRR&R4R______________
````````θǯh|seCJEHH*h|seCJEH
h|seCJH*
h|seCJH*
h|seCJh|seCJH*OJQJ^JaJh|seCJH*OJQJ^JaJh|seCJOJQJ^JaJE]]]^^4_5_` `X`Y`,a-aaaaa
h8|07$8$H$]|^`0
h807$8$H$^`0
h807$8$H$]0
h8007$8$H$]0^`0` `<`=`>`?`@`A`R`S`/a0a1a2a3a4aDaEa`aaabacasatauavawaxayaaaaaaaaaaaaaaaaaabSbeitw9÷۩h|seCJEHOJQJ^Jh|se5CJEHH*\h|se5CJ\Uh|seh|seCJEHH*h|seCJEHh|seCJEH
h|seCJH*
h|seCJ
h|seCJH*>n the appropriate way, you can produce the reaction for which the numerical value of the equilibrium constant is desired. Once you have that, you can do an ICE table calculation in the usual way. It should be possible to make an approximation in your solution to the ICE table calculation to avoid having to solve the quadratic formula.
a) 1.6 x 10-13 *b) 2.4 x 10-10 c) 2.5 x 10-7
d) 4.1 x 10-5 e) 1.8 x 10-3
If we reverse the acetic acid ionization reaction and add the water ionization reaction, we obtain the desired reaction:
1
H3O+(aq) + C2H3O2-(aq) <-----> HC2H3O2(aq) + H2O(l) ---- = 5.6 x 104
Ka
2H2O(l) <----------> H3O+(aq) + OH-(aq) KW = 1.0 x 10-14
-----------------------------------------------------------------
C2H3O2-(aq) + H2O(l) <-----> HC2H3O2(aq) + OH-(aq) Kb = 5.6 x 10-10
Recall that when we reverse the direction of a chemical reaction, we take the reciprocal of its equilibrium constant, and when we add chemical reactions, we multiply their equilibrium constants. Using these principles, we have determined that the desired reaction has an equilibrium constant of 5.6 x 10-10. This equilibrium constant has been labeled Kb since the C2H3O2- is acting as a base. We know that it acts as a base because it generates OH- ions in its reaction with water. We refer to C2H3O2- as the conjugate base of HC2H3O2 because C2H3O2- is what is left over after HC2H3O2, acting as an acid, donates an H+ to H2O to form H3O+.
Notice that what has been shown above is that
1
----- . KW = Kb
Ka
This can be rewritten in the form
Ka . Kb = KW
This is a general relationship between the equilibrium constants of any acid and its conjugate base. Since KW is a known constant, we can calculate Kb if we know Ka and we can calculate Ka if we know Kb. Keeping this formula in mind, it will not be necessary to actually set up the chemical arithmetic each time, as I have done above. Once you know the pattern, you can quickly and easily find the needed equilibrium constant.
Now that we have the equilibrium constant for the desired reaction, we can calculate the equilibrium concentrations in the usual manner.
Since the NaC2H3O2 is 100% ionized in water, a 3.00 M solution of NaC2H3O2 is really a solution that is 3.00 M in both Na+ and C2H3O2-. Therefore, the initial concentration of C2H3O2- is 3.00 M.
[C2H3O2-]initial = 3.00 mol L-1
[HC2H3O2-]initial = 0 mol L-1
[OH-]initial H" 0 Note: In an aqueous solution, there will
always be a small amount of OH-
present from the self-ionization of
water.
AN ICE TABLE
[C2H3O2-][HC2H3O2][OH-]Initial3.000H" 0Change-X+X+XEquilibrium3.00 - XXX
[HC2H3O2]eq [OH-]eq
----------------- = Kb
[C2H3O2-]eq
(X) (X)
----------- = 5.6 x 10-10
3.00 - X
Since the initial concentration of C2H3O2- is fairly large and the extent of reaction is small (as indicated by the small value of Kb), the concentration of C2H3O2- is probably not significantly reduced by the reaction. That is,
3.00 X H" 3.00
With this approximation, we can ignore the subtraction of X in the denominator. This greatly simplifies the equation.
(X) (X)
--------- = 5.6 x 10-10
3.00
X2
------ = 5.6 x 10-10
3.00
X2 = 3.00 (5.6 x 10-10) = aST'(8~^_
h8"07$8$H$]"^`0
h807$8$H$^`0
h7$8$H$9:;<DEFGHIJYZ[\]^fg|}%&789:;<EFMNY\#$TUVWXYZvwxyz{h|seCJEHH*OJQJ^Jh|seCJEHOJQJ^Jh|seCJEHH*OJQJ^JS$)*+,-.4578>?@nopqstz{%&=>KLȤȤȠȤȤȻȤȤȤȤȤȤȤȤȤȤȤȤȤh|seh|seCJH*OJQJ^Jh|seOJQJ^Jh|seCJH*OJQJ^Jh|seCJOJQJ^Jh|seCJEHH*OJQJ^Jh|seCJEHH*OJQJ^Jh|seCJEHOJQJ^J? 8CDhi~/0\HJvx
h8"07$8$H$]"^`078>?@ABCDpqrstuvx~̽h|seCJEHOJQJ^Jh|seCJH*OJQJ^JaJh|seCJOJQJ^JaJh|seCJH*OJQJ^Jh|seCJH*OJQJ^Jh|seCJOJQJ^JAxzRkd
$$Ifl\d~
^L,"064
la
h8"$7$8$H$If]" kRRRR
h8"$7$8$H$If]"kd
$$Ifl\d~
^L,"064
la kRRRR
h8"$7$8$H$If]"kdh$$Ifl\d~
^L,"064
la1L^_kkOOOOOOOO
h8"07$8$H$]"^`0kd$$Ifl\d~
^L,"064
la !"#$%'+,-/JKSTUVWXYZ\89:;<=>NTvx
'()Uh|seCJH*OJQJ^JaJh|seCJOJQJ^JaJh|seCJOJQJ^Jh|seCJEHH*OJQJ^Jh|seCJEHOJQJ^Jh|seCJEHH*OJQJ^J>Vhjz
./i
h8"07$8$H$]"^`01.7 x 10-9
X = 4.1 x 10-5 = [OH-]eq
[H3O+]eq [OH-]eq = KW = 1.0 x 10-14 Numerical value
applies at 25 oC
KW 1.0 x 10-14
[H3O+]eq = -------- = ----------- = 2.4 x 10-10
[OH-]eq 4.1 x 10-5
)+345679=>?AGHUX
h|seCJh|seCJH*OJQJ^JaJh|seCJOJQJ^JaJh|seCJH*OJQJ^JaJ&(/ =!"#$%$$If!vh5<555#v<#v#v:Vl0654a$$If!vh5<555#v<#v#v:Vl0654a$$If!vh5<555#v<#v#v:Vl0654a$$If!vh5<555#v<#v#v:Vl0654a$$If!vh5555#v:Vl0654$$If!vh5555#v:Vl0654$$If!vh5555#v:Vl0654$$If!vh5555#v:Vl0654$$If!vh50555#v0#v#v#v:Vl0654a$$If!vh50555#v0#v#v#v:Vl0654a$$If!vh50555#v0#v#v#v:Vl0654a$$If!vh50555#v0#v#v#v:Vl0654a$$If!vh5&555#v&#v#v:Vl0654a$$If!vh5&555#v&#v#v:Vl0654a$$If!vh5&555#v&#v#v:Vl0654a$$If!vh5&555#v&#v#v:Vl0654a$$If!vh51555#v1#v#v#v:Vl0654a$$If!vh51555#v1#v#v#v:Vl0654a$$If!vh51555#v1#v#v#v:Vl0654a$$If!vh51555#v1#v#v#v:Vl0654a$$If!vh5555#v#v#v#v:Vl0654a$$If!vh5555#v#v#v#v:Vl0654a$$If!vh5555#v#v#v#v:Vl0654a$$If!vh5555#v#v#v#v:Vl0654a8@8Normal_HmH sH tH >@> Heading 1$$@&a$CJDA@DDefault Paragraph FontVi@VTable Normal :V44
la(k@(No List0>@0Title$a$CJbC@bBody Text Indent#
h80^`0CJX:\]de<tu$%45sCDIJz{ O x y
VWjk
9:{|89lmRSwx12rs+,Z[>?WX()ac|}$%CDab3L_`@A]^|}*+kl78efz { /!0!!!!!%"&"V"W""""""#.#/###B$C$$$$$*%+%V%W%%%%%%%%%%&&
&&&&$&&&'&.&1&4&8&9&E&P&[&^&_&a&m&&&&&&&&&
'''"'U'''''''''(((_(`(((((()")#)))))<*****++1+2++++,-,.,,,,,,,y-z---Q.R......../A/d/u/v/////////////////////////000080C0D0)1*1B1C11111222&2.2/2Y2Z2z2{22222!3@3A3v3x333V4W4445 5,5-5O5P55555 6!6@6A6W6X6Y6`6g6m6n6v6{6666666666666666666677 788)8*8888888888899=9?99999::::
;;;;<<>=?=a=b====
>2>3>Q>R>h>i>j>p>w>}>~>>>>>>>>>>>>>>>>>>>>/?L?M?n????c@d@@@+A,A-AZA[A|A}AAAB!BFBGB\B]BsBtBuB{BBBBBBBBBBBBBBBBBBBBBBC CC/C:C;C$D%D=D>DDDDDDDD EEE=E>E`EaEEEEEF1F2FhFjFbGcGGG{H|HHHIIJJNJOJKKKKLLLLLLMMFMGMMMMYPZPPPPPPPPPPPRR.S/SSSTT>T?T}TTTTT
UUUU U&U'U/U4U6U:U;UBUEUHUKULUXUaUcUeUfUiUUUUUUUUUVVVVcWeWpWWWWWWWWWWXXJXgXhXXXX000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000000000000000000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000000000000000000000000000de<tu$%45sCDIJz{ O x y
VWjk
9:{|89lmRSwx12rs+,Z[>?WX()ac|}$%CDab3L_`@A]^|}*+kl78efz { /!0!!!!!%"&"V"W""""""#.#/###B$C$$$$$*%+%V%W%%%%%%%%%%&&
&&&&$&&&'&.&1&4&8&9&E&P&[&^&_&a&m&&&&&&&&&
'''"'U'''''''''(((_(`(((((()")#)))))<*****++1+2++++,-,.,,,,,,,y-z---Q.R......../A/d/u/v/////////////////////////000080C0D0)1*1B1C11111222&2.2/2Y2Z2z2{22222!3@3A3v3x333V4W4445 5,5-5O5P55555 6!6@6A6W6X6Y6`6g6m6n6v6{6666666666666666666677 788)8*8888888888899=9?99999::::
;;;;<<>=?=a=b====
>2>3>Q>R>h>i>j>p>w>}>~>>>>>>>>>>>>>>>>>>>>/?L?M?n????c@d@@@+A,A-AZA[A|A}AAAB!BFBGB\B]BsBtBuB{BBBBBBBBBBBBBBBBBBBBBBC CC/C:C;C$D%D=D>DDDDDDDD EEE=E>E`EaEEEEEF1F2FhFjFbGcGGG{H|HHHIIJJNJOJKKKKLLLLLLMMFMGMMMMYPZPPPPPPPPPPPRR.S/SSSTT>T?T}TTTTT
UUUU U&U'U/U4U6U:U;UBUEUHUKULUXUaUcUeUfUiUUUUUUUUUVVVVcWeWpWWWWWWWWWWXXJXgXhXXXXZ0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0Z0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0z $d')-519<QAEJPMTLXd]`9)17:;=?BGKPSU[]cikmwxzzX%(E*u-0000{1D47t;;;
<h<@CF@FdFF*GPLQ@RRRSW*XRXtXXY]a x245689<>@ACDEFHIJLMNOQRTVWXYZ\^_`abdefghjlvy{|}~38@0(
B
S ?4u[<|u[wu[|{u[Tu[ķu[t| u[
u[~u[u[}|
u[,|u[>u[\2u[u[wu[Mu[l~u[D|u[7u[$u[DVu[8u[u[$u[$0u[|u[$u[DFu[$ u[}!u[\}"u[~#u[~$u[Ls}%u[&u[lx'u[T(u[#)u[*u[|"|+u[d},u[-u[~.u[/u[z0u[z1u[2u[,3u[4u[z5u[!|6u[--..//////r2r222*3*3Q9Q9??q?q?mEmEEEBFBFHH1J1J,M,MMMOOBTBTTT!U!UxUxUXXXXXXX
!"#$%&'()*+,-./0123--..//////u2u222-3-3T9T9??t?t?pEpEEEEFEFHH4J4J/M/MMMOOETETTT$U$U{U{U X XXXXXX
!"#$%&'()*+,-./012393*urn:schemas-microsoft-com:office:smarttagsState94*urn:schemas-microsoft-com:office:smarttagsplaceȵ4343434343434343434343434343434343434343434343434343PZy{nq.0LN-/IKgi')gi .0EGWYac* , ##$$&&&&**** ++~------////00v2x2223333333444.404<4?4A4C40545$6'6Z6^6g6j66666666666E7I777d9g9}999999999999: :/:2:::;;;;<<<<<<<<B=E=6>8>k>n>x>z>>>>>??I?K?u?w?????j@l@@@@@BBBBCC[E]EiEkEqEsEEEEEF F4F7FFFHFqGsGGGGGGGHHHHHHIIIIII#J%J5J7JLLLLLL"M$M0M2MMMMMMMtUvU|U~UUU
XXXX X"XdXfXXXXXX "
ALtx T W
)<?~"or18GLz}47.3]`Z_os+0OS-0KN,/6;HKfi -0DGVY`cou} !!""A"E"r"v"""""##E$H$\%d%%%%%g&k&o&~&&&&&&&&&&'''#'3'''''''*(/(g(q((((())>*C*****++&+0+++W,f,,,,,z-~-....../ /*/,/M/P////0000+071;111221262\2`2222223C3H33445<5W5_555555566(606666666678"8888888!9%999;;E=M=i=q=======>'>9>A>>>>>;?B?t?w???f@j@aAiAAAAAAABB1B;BMBUBBBBBCCC!C2D6DDDDDEE@EDEhEkEEEEEF F4F:FRG`GgGqGHHIIJJLLM MMMPPPPPPT T'T/TETMTTTTTTTsUvUUUUUUUVVrW~WWWWWWWXXVX]XXXXXX33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333:[tu%'p/D0Y6 7j>>IB;CTUXXXXT|se*:lmx2,%%%%&&
&&&&$&&&'&.&1&4&8&9&E&P&[&^&_&/////////////////////X6Y6`6g6m6n6v6{66666666666666i>j>p>w>}>~>>>>>>>>>>>>>>>>tBuB{BBBBBBBBBBBBBBBBBBBUUU U&U'U/U4U6U:U;UBUEUHUKULUXUaUcUeUfUX@tt_tt$jjj./:1:2a5a6a7a8s=s>s?sAsBsCsDsJOTOUVWX@ "H@:x@>@DFH@PR@VXZ@@@@UnknownGz Times New Roman5Symbol3&z Arial?5 z Courier NewA&{aMS Shell Dlg"qhӆӆӆE
K-E
K-!24dXX2HX)?*2GENERAL CHEMISTRY II
DALE ROBINSON
Dale RobinsonOh+'0 $0
P\h
tGENERAL CHEMISTRY IIDALE ROBINSONNormalDale Robinson2Microsoft Office Word@G@uF@䨓G@䨓GE
K՜.+,0hp
$Alamo Community College District-X'GENERAL CHEMISTRY IITitle
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
Root Entry FYGData
1TableWordDocument*SummaryInformation(DocumentSummaryInformation8CompObjq
FMicrosoft Office Word Document
MSWordDocWord.Document.89q